ArcGIS REST Services Directory |
Home > services > ChangeFromBase_CDD_WFL1 (FeatureServer) > All Layers and Tables | | API Reference |
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool
Cooling degree days (CDD) are way to quantify the intensity of cooling needs over a period of time, presented above at a seasonal scale. The CDD for a single day are calculated as the mean daily temperature minus 65°F. So, a daily mean temperature of 75°F yields 10 CDD, providing a metric that can be related to energy demand to cool the building back to 65°F. 65°F is used as a basis for the CDD calculation because it is an outdoor temperature generally regarded as comfortable. In this tool, the CDD for each day is totaled across a season, and negative CDD values are not incorporated because CDD are only meant to quantify the time and intensity of outdoor temperatures above 65°F. The winter season in New Jersey does not typically require cooling as mean daily temperatures rarely exceed 65°F.Climate observations and projection data provided by the Northeast Regional Climate Center at Cornell University through their Applied Climate Information System (ACIS, rcc-acis.org). The Localized Constructed Analog downscaling projections were obtained from the Scripps Institution of Oceanography (http://loca.ucsd.edu). Time periods are simulated using greenhouse gas emissions scenarios RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions). The modeled data have been extracted from the U.S. National Oceanic and Atmospheric Administration's Applied Climate Information System and localized to New Jersey.The Applied Climate Information System (ACIS) was developed and is maintained by the NOAA Regional Climate Centers (RCCs). It was designed to manage the complex flow of information from climate data collectors to the end users of climate data information. The main purpose of ACIS is to alleviate the burden of climate information management for people who use climate information to make management decisions. Thank you to the Northeast Regional Climate Center for assistance with the data used to create this tool